
Security Assessment

Gondi (Addendum 2)
CertiK Assessed on Jul 27th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

6 Medium 6 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 5 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

8 Informational 8 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY GONDI (ADDENDUM 2)

CertiK Assessed on Jul 27th, 2023

Gondi (Addendum 2)

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Lending

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/27/2023

KEY COMPONENTS

N/A

CODEBASE
changes introduced by commit excluding test folder,

src/lib/loans was fully audited

changes introduced by commit excluding

View All in Codebase Page

COMMITS
13f392689d0ec59dab2f7e4190c34f532de9d946

918dcc63e660f57722fbb6b407a90152449770bf

View All in Codebase Page

19
Total Findings

19
Resolved

0
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

https://github.com/pixeldaogg/florida-contracts/compare/a50b1b7c02f133efbc90b9a2c94abacf70097c2b...13f392689d0ec59dab2f7e4190c34f532de9d946
https://github.com/pixeldaogg/florida-contracts/tree/918dcc63e660f57722fbb6b407a90152449770bf
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946
https://github.com/pixeldaogg/florida-contracts/tree/918dcc63e660f57722fbb6b407a90152449770bf

TABLE OF CONTENTS GONDI (ADDENDUM 2)

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

BLB-01 : `cancelRenegotiationOffers()` cancels normal offers

BLB-02 : Wrong `LOAN_MANAGER_ID`

MSL-01 : In `MultiSourceLoan._baseRenegotiationChecks()` it is not checked that the offer is not cancelled

MSL-03 : Invalid `_checkStrictlyBetter()` arguments in `MultiSourceLoan.refinanceFull()`

MSL-04 : Wrong handling of `_refinanceOffer.fee` in `_refinancePartial()`

MSL-05 : Different usage of `_minimum.interest` in `_processOldSources()`

BLB-04 : Function state mutability can be restricted to `view`

LOA-01 : Missing Zero Address Validation

MSL-06 : `_refinanceOffer.signer` is not checked

SSL-01 : Wrong `_transferredIn` passed to `validateLoan()` in `renegotiateLoan()`

SSL-02 : Unsafe operations in loan liquidation workflow

BLB-05 : `BaseLoan.cancelAllOffers()` can be executed twice

LIB-01 : `_tokenId` is supposed to be `_loanId`

LOA-02 : Protocol fee is not taken in `emitLoan()`

LOA-03 : `LoanNotFoundError` is misleading

LON-01 : Inaccurate comments

MSL-07 : `withProtocolFee` is not checked in `MultiSourceLoan.repayLoan()`

SRC-01 : Unused declarations

SSL-03 : `+=` can be used

Appendix

Disclaimer

TABLE OF CONTENTS GONDI (ADDENDUM 2)

CODEBASE GONDI (ADDENDUM 2)

Repository

changes introduced by commit excluding test folder, src/lib/loans was fully audited

changes introduced by commit excluding AuctionLoanLiquidator.sol

Commit

13f392689d0ec59dab2f7e4190c34f532de9d946 918dcc63e660f57722fbb6b407a90152449770bf

CODEBASE GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/compare/a50b1b7c02f133efbc90b9a2c94abacf70097c2b...13f392689d0ec59dab2f7e4190c34f532de9d946
https://github.com/pixeldaogg/florida-contracts/tree/918dcc63e660f57722fbb6b407a90152449770bf
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946
https://github.com/pixeldaogg/florida-contracts/tree/918dcc63e660f57722fbb6b407a90152449770bf

AUDIT SCOPE GONDI (ADDENDUM 2)

5 files audited 3 files with Resolved findings 2 files without findings

ID Repo File SHA256 Checksum

BLB
pixeldaogg/florida-

contracts
src/lib/loans/BaseLoan.sol

b980221e40eb328966b4756936ee0f4152a2

b39ccba90f3369760bf6675a8429

MSL
pixeldaogg/florida-

contracts
src/lib/loans/MultiSourceLoan.sol

6344ef6b577daa5ff19e124ef31cc0e162752

a621fff0bee326f587f384bdd90

SSL
pixeldaogg/florida-

contracts
src/lib/loans/SingleSourceLoan.sol

7f65613484924745fb416a3f5e451a7e11251

ce582cc5b93288337f170db4810

BLU
pixeldaogg/florida-

contracts
src/lib/loans/BaseLoan.sol

a2177ceddfabf21a84bf39b9721786f7f19dc2

a8957b90736a19b4b289f01624

MUL
pixeldaogg/florida-

contracts
src/lib/loans/MultiSourceLoan.sol

addc69509750729d897ce90b07b8eabf9494

67f81c09f8c65ad17d6608073160

AUDIT SCOPE GONDI (ADDENDUM 2)

APPROACH & METHODS GONDI (ADDENDUM 2)

This report has been prepared for Gondi to discover issues and vulnerabilities in the source code of the Gondi (Addendum 2)

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS GONDI (ADDENDUM 2)

FINDINGS GONDI (ADDENDUM 2)

This report has been prepared to discover issues and vulnerabilities for Gondi (Addendum 2). Through this audit, we have

uncovered 19 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

BLB-01
cancelRenegotiationOffers() Cancels Normal

Offers
Inconsistency Medium Resolved

BLB-02 Wrong LOAN_MANAGER_ID Inconsistency Medium Resolved

MSL-01
In MultiSourceLoan._baseRenegotiationChecks()

It Is Not Checked That The Offer Is Not Cancelled
Volatile Code Medium Resolved

MSL-03
Invalid _checkStrictlyBetter() Arguments In

MultiSourceLoan.refinanceFull()
Volatile Code Medium Resolved

MSL-04
Wrong Handling Of _refinanceOffer.fee In

_refinancePartial()

Incorrect

Calculation
Medium Resolved

MSL-05
Different Usage Of _minimum.interest In

_processOldSources()
Inconsistency Medium Resolved

BLB-04
Function State Mutability Can Be Restricted To

view
Inconsistency Minor Resolved

LOA-01 Missing Zero Address Validation Volatile Code Minor Resolved

MSL-06 _refinanceOffer.signer Is Not Checked Volatile Code Minor Resolved

SSL-01
Wrong _transferredIn Passed To

validateLoan() In renegotiateLoan()
Volatile Code Minor Resolved

SSL-02 Unsafe Operations In Loan Liquidation Workflow Volatile Code Minor Resolved

FINDINGS GONDI (ADDENDUM 2)

19
Total Findings

0
Critical

0
Major

6
Medium

5
Minor

8
Informational

ID Title Category Severity Status

BLB-05
BaseLoan.cancelAllOffers() Can Be Executed

Twice
Coding Issue Informational Resolved

LIB-01 _tokenId Is Supposed To Be _loanId Coding Style Informational Resolved

LOA-02 Protocol Fee Is Not Taken In emitLoan() Inconsistency Informational Resolved

LOA-03 LoanNotFoundError Is Misleading Coding Style Informational Resolved

LON-01 Inaccurate Comments Coding Style Informational Resolved

MSL-07
withProtocolFee Is Not Checked In

MultiSourceLoan.repayLoan()
Volatile Code Informational Resolved

SRC-01 Unused Declarations Inconsistency Informational Resolved

SSL-03 += Can Be Used Coding Style Informational Resolved

FINDINGS GONDI (ADDENDUM 2)

BLB-01 cancelRenegotiationOffers() CANCELS NORMAL

OFFERS

Category Severity Location Status

Inconsistency Medium src/lib/loans/BaseLoan.sol (base): 377 Resolved

Description

377 isOfferCancelled[_lender][renegotiationId] = true;

isRenegotiationOfferCancelled is supposed to be updated in cancelRenegotiationOffers() .

Recommendation

We recommend updating isRenegotiationOfferCancelled or using common numbering of normal and renegotiation

offers.

BLB-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L377-L377

BLB-02 WRONG LOAN_MANAGER_ID

Category Severity Location Status

Inconsistency Medium src/lib/loans/BaseLoan.sol (base): 699 Resolved

Description

The contract LoanManagerId declares LOAN_MANAGER_ID = 0x863af7bc . The value is misleading since

LoanManager.onLoanRepaid.selector = 0xade3a41e

LoanManager.validateLoan.selector = 0x99e67b8e

and

type(ILoanManager).interfaceId = LoanManager.onLoanRepaid.selector ^

LoanManager.validateLoan.selector = 0x3405df90

assuming ILoanManager declares two functions

Recommendation

We recommend clarifying the origin of the value or using the proposed methods of calculation.

BLB-02 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L699-L699

MSL-01 IN MultiSourceLoan._baseRenegotiationChecks() IT IS NOT

CHECKED THAT THE OFFER IS NOT CANCELLED

Category Severity Location Status

Volatile Code Medium src/lib/loans/MultiSourceLoan.sol (base): 779 Resolved

Description

BaseLoan defines isRenegotiationOfferCancelled / lenderMinRenegotiationOfferId , however, they are not checked

in MultiSourceLoan._baseRenegotiationChecks() . This disallows _refinanceOffer to be cancelled by the lender.

Recommendation

We recommend checking if _refinanceOffer is cancelled.

MSL-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L779-L779

MSL-03 INVALID _checkStrictlyBetter() ARGUMENTS IN

MultiSourceLoan.refinanceFull()

Category Severity Location Status

Volatile Code Medium src/lib/loans/MultiSourceLoan.sol (base): 200~208 Resolved

Description

200 _checkStrictlyBetter(

201 _refinanceOffer.principalAmount,

202 totalDelta,

203 _refinanceOffer.duration,

204 currentDuration,

205 _refinanceOffer.aprBps * _refinanceOffer.principalAmount,

206 totalAnnualInterest,

207 _refinanceOffer.fee,

208 _loan.startTime

The second argument is expected to be the old principal. The new principal is expected to be 1% lower than the old one

(with default _minimum). However, totalDelta is passed, that is the amount repaid by the refinance lender, not the old

principal. Passing the "strictly better" condition is significantly easier.

Arguments 5 and 6 are expected to be new and old aprBps , however, annual interests are passed instead. As a result,

instead of aprOld * principalOld - aprNew * principalNew it will be calculated aprOld * principalOld *

principalOld - aprNew * principalNew * principalNew . Interest delta is expected to be at least 1% of the old interest.

This also makes it easier to pass "strictly better" condition. For example, halving the principal should give a 50%

improvement, but gives 75%.

Recommendation

We recommend using the same checks for single and multi source loans.

MSL-03 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L200-L208

MSL-04 WRONG HANDLING OF _refinanceOffer.fee IN

_refinancePartial()

Category Severity Location Status

Incorrect Calculation Medium src/lib/loans/MultiSourceLoan.sol (base): 596 Resolved

Description

MultiSourceLoan._refinancePartial() works this way:

1. New lender prepares _refinanceOffer and calls refinancePartial() / refinancePartialBatch()

2. _processOldSources() calculates totalDelta

3. _processOldSource() transfers the delta with interest from new to each old lender

4. It is ensured totalDelta == _refinanceOffer.principalAmount

5. If lender is a vault, validateLoan() is called with _transferredIn = _refinanceOffer.fee

However, the fee was not taken by new lender, they covered fully totalDelta and accrued interest.

Recommendation

We recommend ensuring totalDelta == _refinanceOffer.principalAmount - _refinanceOffer.fee instead.

MSL-04 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L596-L596

MSL-05 DIFFERENT USAGE OF _minimum.interest IN

_processOldSources()

Category Severity Location Status

Inconsistency Medium src/lib/loans/MultiSourceLoan.sol (base): 658~660 Resolved

Description

655 if (

656 _isStrictlyBetter &&

657 delta > 0 &&

658 ((source.aprBps - _refinanceOffer.aprBps).mulDivDown(

659 _PRECISION,

660 source.aprBps

661) < _minimum.interest)

662) {

663 revert InvalidRenegotiationOfferError();

664 }

_minimum.interest is supposed to set minimal interest improvement for _isStrictlyBetter offers. However,

_processOldSources() checks if aprBps is improved by this value instead.

For example, if _targetPrincipal is half of _source.principalAmount and aprBps is the same, the interest is halved

and should be "strictly better", but the transaction is reverted with InvalidRenegotiationOfferError .

Recommendation

We recommend clarifying the intended behavior.

Alleviation

The project team confirmed the behavior is intended.

MSL-05 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L658-L660

BLB-04 FUNCTION STATE MUTABILITY CAN BE RESTRICTED TO
view

Category Severity Location Status

Inconsistency Minor src/lib/loans/BaseLoan.sol (base): 486 Resolved

Description

BaseLoan.getLiquidationAuctionDuration() state mutability can be restricted to view . The function is supposed to be

called off-chain.

Recommendation

We recommend using view modifier.

BLB-04 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L486-L486

LOA-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

src/lib/loans/BaseLoan.sol (base): 223~225, 267, 456, 471; src/lib/loans/M

ultiSourceLoan.sol (base): 80, 362; src/lib/loans/SingleSourceLoan.sol (ba

se): 73, 210

Resolved

Description

The cited address input is missing a check that it is not address(0) .

Recommendation

We recommend adding a check the passed-in address is not address(0) to prevent unexpected errors.

LOA-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L223-L225
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L267-L267
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L456-L456
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L471-L471
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L80-L80
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L362-L362
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L73-L73
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L210-L210

MSL-06 _refinanceOffer.signer IS NOT CHECKED

Category Severity Location Status

Volatile Code Minor src/lib/loans/MultiSourceLoan.sol (base): 191 Resolved

Description

_refinanceOffer.signer field is not checked in MultiSourceLoan.refinanceFull() in case of strictImprovement .

Recommendation

We recommend ensuring the field is zero despite the fact it is not used.

Alleviation

Since the field is unused in the mentioned scenario, the finding is marked as Resolved.

MSL-06 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L191-L191

SSL-01 WRONG _transferredIn PASSED TO validateLoan() IN

renegotiateLoan()

Category Severity Location Status

Volatile Code Minor src/lib/loans/SingleSourceLoan.sol (base): 411 Resolved

Description

407 if (_vaultDirectory.vaultExists(_renegotiationOffer.lender)) {

408 LoanManager(_renegotiationOffer.lender).validateLoan(

409 newLoanId,

410 _renegotiationOffer.principalAmount + accruedInterest,

411 _renegotiationOffer.fee,

412 abi.encode(_loan)

413);

414 }

In SingleSourceLoan.renegotiateLoan() if the new lender is a vault, it is informed about the incoming amount via the call

to validateLoan() . _renegotiationOffer.fee is passed as _transferredIn argument. However, the amount

transferred in reality is lower by protocolFeeFromFee . This can lead to a wrong bookkeeping in

Vault._processLoanIncome() .

Recommendation

We recommend passing the real amount transferred to Vault.

SSL-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L411-L411

SSL-02 UNSAFE OPERATIONS IN LOAN LIQUIDATION WORKFLOW

Category Severity Location Status

Volatile Code Minor src/lib/loans/SingleSourceLoan.sol (base): 526 Resolved

Description

The loan liquidation works this way:

1. Lender or their signer calls liquidateLoan()

2. If _loan.requiresLiquidation , _loanLiquidator.liquidateLoan() is called

3. Auction lasts for _liquidationAuctionDuration

4. Someone calls AuctionLoanLiquidator.settleAuction()

5. auction.highestBid is transferred to loanAddress

6. loanAddress.loanLiquidated() is called

7. In loanLiquidated() highestBid is transferred to lender

8. Loan is deleted

9. Auction is deleted

This workflow relies on the implementation details of other parts

1. It is better to approve(loanAddress, highestBid) in settleAuction() instead of transferring. This will make

sure that the loanAddress will only spend the tokens from the auction, never its own. In the current implementation

AuctionLoanLiquidator can forget to transfer funds.

2. It is better to mark the _loanId as being liquidated in liquidateLoan() as soon as the liquidation process starts.

The current implementation relies on the nonReentrant modifier in AuctionLoanLiquidator . See the scenario

section.

Scenario

This scenario currently can't be executed due to the nonReentrant modifier in AuctionLoanLiquidator , however, it

demonstrates the potential issues.

1. Lender calls loanContract.liquidateLoan()

2. _loanLiquidator.liquidateLoan() is called, _loans[_loanId] is kept active

3. Auction lasts for _liquidationAuctionDuration , the lender takes part and raises bids to influence the final price

4. If the lender accidentally wins the auction they call _loanLiquidator.settleAuction()

5. When the collateral is transferred to the lender, the onERC721Received() hook is called and the lender gets control

SSL-02 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L526-L526

6. In the same transaction lender transfers the collateral back to the loanContract

7. In the same transaction lender calls loanContract.liquidateLoan() again since _loans[_loanId] is still active.

Recommendation

We do not recommend relying on the implementation details of other contracts even if they are part of the project.

SSL-02 GONDI (ADDENDUM 2)

BLB-05 BaseLoan.cancelAllOffers() CAN BE EXECUTED TWICE

Category Severity Location Status

Coding Issue Informational src/lib/loans/BaseLoan.sol (base): 347, 397 Resolved

Description

347 if (currentMinOfferId > _minOfferId) {

348 revert LowOfferIdError(_lender, _minOfferId, currentMinOfferId);

Calling the function with _minOfferId equal to currentMinOfferId will emit the event AllOffersCancelled .

Recommendation

We recommend checking currentMinOfferId >= _minOfferId to avoid unnecessary execution.

BLB-05 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L347-L347
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L397-L397

LIB-01 _tokenId IS SUPPOSED TO BE _loanId

Category Severity Location Status

Coding

Style
Informational

src/lib/Vault.sol (base): 626; src/lib/loans/BaseLoan.sol (base): 71

6, 730
Resolved

Description

The _tokenId argument of Vault.validateLoan() and onLoanRepaid() is supposed to be _loanId .

Recommendation

We recommend renaming the argument.

LIB-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/Vault.sol#L626-L626
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L716-L716
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L730-L730

LOA-02 PROTOCOL FEE IS NOT TAKEN IN emitLoan()

Category Severity Location Status

Inconsistency Informational
src/lib/loans/MultiSourceLoan.sol (base): 140, 222; src/lib/loans/

SingleSourceLoan.sol (base): 131
Resolved

Description

In emitLoan() the borrower gets _loanOffer.principalAmount - _loanOffer.fee , however, the

_protocolFee.recipient doesn't get the _protocolFee.fraction of fee.

_renegotiationOffer.fee and accrued interest are taxed by _protocolFee.fraction in

SingleSourceLoan.renegotiateLoan() .

_refinanceOffer.fee and accrued interest are not taxed by _protocolFee.fraction in

MultiSourceLoan.refinanceFull() .

Recommendation

We recommend clarifying the intended behavior.

LOA-02 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L140-L140
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L222-L222
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L131-L131

LOA-03 LoanNotFoundError IS MISLEADING

Category Severity Location Status

Coding

Style
Informational

src/lib/loans/MultiSourceLoan.sol (base): 422~424; src/lib/loans/Si

ngleSourceLoan.sol (base): 160~165, 244~245, 503~505
Resolved

Description

160 if (_loan.hash() != _loans[_loanId]) {

161 revert InvalidLoanError(_loanId);

162 }

163 if (_loan.borrower == address(0)) {

164 revert LoanNotFoundError(_loanId);

165 }

The first check ensures that the _loanId with the same content as _loan was created in emitLoan() and not yet

liquidated/repaid.

The second check ensures that the loan previously created has a valid borrower . However, that is always true. The check

is redundant and misleading.

When the loan is liquidated or repaid, its hash is deleted from _loans .

Recommendation

We recommend removing LoanNotFoundError or clarifying the intended behavior.

LOA-03 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L422-L424
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L160-L165
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L244-L245
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L503-L505

LON-01 INACCURATE COMMENTS

Category Severity Location Status

Coding

Style
Informational

src/interfaces/loans/IBaseLoan.sol (base): 105, 111, 117; src/interf

aces/loans/IMultiSourceLoan.sol (base): 75; src/interfaces/loans/ISi

ngleSourceLoan.sol (base): 12~19

Resolved

Description

Some comments are inaccurate

_offerId is supposed to be _renegotiationId

_offerIds is supposed to be _renegotiationIds

Recommendation

We recommend updating the comments.

LON-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/IBaseLoan.sol#L105-L105
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/IBaseLoan.sol#L111-L111
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/IBaseLoan.sol#L117-L117
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/IMultiSourceLoan.sol#L75-L75
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/ISingleSourceLoan.sol#L12-L19

MSL-07 withProtocolFee IS NOT CHECKED IN

MultiSourceLoan.repayLoan()

Category Severity Location Status

Volatile Code Informational src/lib/loans/MultiSourceLoan.sol (base): 356 Resolved

Description

In MultiSourceLoan.repayLoan() the totalProtocolFee is only accumulated if withProtocolFee , however, it is always

transferred to protocolFee.recipient .

Recommendation

We recommend checking if withProtocolFee before transferring for consistency with other code.

MSL-07 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L356-L356

SRC-01 UNUSED DECLARATIONS

Category Severity Location Status

Inconsistency Informational

src/interfaces/loans/IBaseLoan.sol (base): 10~14; src/lib/Auctio

nLoanLiquidator.sol (base): 121; src/lib/loans/BaseLoan.sol (bas

e): 716~719; src/lib/loans/MultiSourceLoan.sol (base): 23, 555;

src/lib/loans/SingleSourceLoan.sol (base): 27

Resolved

Description

BaseLoan.onLoanRepaid() doesn't use the declared arguments.

totalAnnualInterest in MultiSourceLoan._refinancePartial() is never used.

The compiler will produce warnings.

LoanStatus in IBaseLoan is never used.

_addLoanContract in AuctionLoanLiquidator is never used.

LoanManagerId inherited by SingleSourceLoan is never used. LoanManager.onLoanRepaid.selector is used

directly.

MultiSourceLoan.liquidationAuctionDuration can be replaced with configurable

BaseLoan._liquidationAuctionDuration . It can also be declared `immutable.

Recommendation

We recommend removing of unused declarations.

SRC-01 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/interfaces/loans/IBaseLoan.sol#L10-L14
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/AuctionLoanLiquidator.sol#L121-L121
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/BaseLoan.sol#L716-L719
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L23-L23
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/MultiSourceLoan.sol#L555-L555
https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L27-L27

SSL-03 += CAN BE USED

Category Severity Location Status

Coding Style Informational src/lib/loans/SingleSourceLoan.sol (base): 107~109 Resolved

Description

107 _used[_loanOffer.lender][_loanOffer.offerId] =

108 _used[_loanOffer.lender][_loanOffer.offerId] +

109 _loanOffer.principalAmount;

+= operation can be used to improve readability.

Recommendation

We recommend using += wherever possible.

SSL-03 GONDI (ADDENDUM 2)

https://github.com/pixeldaogg/florida-contracts/tree/13f392689d0ec59dab2f7e4190c34f532de9d946/src/lib/loans/SingleSourceLoan.sol#L107-L109

APPENDIX GONDI (ADDENDUM 2)

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX GONDI (ADDENDUM 2)

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER GONDI (ADDENDUM 2)

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER GONDI (ADDENDUM 2)

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Gondi (Addendum 2) Security Assessment CertiK Assessed on Jul 27th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

