
Gondi Security Assessment
Nov 3, 2023

Prepared for

Gondi

Prepared by:

0xfoobar

foostudio 1



Table of Contents

Table of Contents 2
Summary 4

Overview 4
Project Scope 4
Severity Classification 4
Summary of Findings 4

Disclaimer 6
Key Findings and Recommendations 7

1. Using address(0) to denote ETH can lead to invalid storage writes 7
Description 7
Impact 7
Recommendation 7
Response 7

2. Stop untrusted external callbacks by replacing safeTransfer with transfer 8
Description 8
Impact 8
Recommendation 8
Response 8

3. Possible precision loss on interest rate calculation 9
Description 9
Impact 9
Recommendation 9
Response 9

4. Avoid msg.sender usage in internal functions 10
Description 10
Impact 10
Recommendation 10
Response 10

5. AddressManager has stale unused functions 11
Description 11
Impact 11
Recommendation 11
Response 11

6. Use named mappings 12
Description 12
Impact 12
Recommendation 12
Response 12

foostudio 2



7. Remove unused imports and use relative imports over absolute 13
Description 13

8. Fix Natspec 14
Description 14
Impact 14
Recommendation 14
Response 14

9. Add multicall 15
Description 15
Impact 15
Response 15

10. Replace private mappings + public getters with public mappings 16
Description 16
Impact 16
Recommendation 16
Response 16

foostudio 3



Summary

Overview
Gondi is an NFT lending platform supporting borrowing, lending, and automatic refinancing.

Project Scope
We reviewed the core smart contracts and test suite contained within commit hash
`ce97fe6841013303f6df58098b9fd7ec958b02fe` on branch `develop` at
https://github.com/pixeldaogg/florida-contracts. Fixes were reviewed at commit hash
867d7da52d7a93f88cee75beeaacbb0e2df65366 on branch `develop` at
https://github.com/pixeldaogg/florida-contracts. Code in src/lib/validators was not reviewed at
team’s request. We also noted concurrent findings from other auditors such as Quantstamp and
do not double-list issues from their report that have been remediated in the latest commit hash.

Severity Classification
High - Assets can be stolen/lost/compromised directly (or indirectly if there is a valid attack path
that does not have hand-wavy hypotheticals).
Medium - Assets not at direct risk, but the function of the protocol or its availability could be
impacted, or leak value with a hypothetical attack path with stated assumptions, but external
requirements.
Low - Assets are not at risk: state handling, function incorrect as to spec, issues with comments.
Informational - Code style, clarity, syntax, versioning, off-chain monitoring (events, etc)

Summary of Findings

Severity Findings Resolved

High 0 -

Medium 0 -

Low 3 2

Informational 7 4

foostudio 4

https://github.com/pixeldaogg/florida-contracts
https://github.com/pixeldaogg/florida-contracts


foostudio 5



Disclaimer
This security assessment should not be used as investment advice.

We do not provide any guarantees on eliminating all possible security issues. foostudio
recommends proceeding with several other independent audits and a public bug bounty
program to ensure smart contract security.

We did not assess the following areas that were outside the scope of this engagement:
● Website frontend components
● Offchain order management infrastructure
● Multisig or EOA private key custody
● Metadata generation

foostudio 6



Key Findings and Recommendations

1. Using address(0) to denote ETH can lead to invalid storage writes

Severity: Low
Files: UserVault.sol

Description
ETH is not an ERC20, and so the contract uses a magic constant value in place of a token
address. However using address(0) as the default has the failure mode of being the default
value after storage data is cleared, and also the default value for an empty input for some
contract interaction interfaces.

Impact
Storage corruption or accidental user inputs.

Recommendation
Follow the pattern adopted in EIP-7528, EIP-7535 and other top DeFi protocols such as Yearn,
Curve, and Uniswap of using the magic value
`0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE` to denote ETH.

Response
Fixed.

foostudio 7

https://eips.ethereum.org/EIPS/eip-7528
https://eips.ethereum.org/EIPS/eip-7535
https://grep.app/search?q=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE
https://grep.app/search?q=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE


2. Stop untrusted external callbacks by replacing safeTransfer with transfer

Severity: Low
Files: IWrappedPunk.sol, Leverage.sol, MultiSourceLoan.sol

Description
The `safeTransferFrom` method is unfortunately overloaded by ecosystem convention. Its first
usage in ERC20 SafeTransferLib is useful and desirable to handle nonstandard ERC20s such
as USDT. However its usage in ERC721 to trigger unsafe external callbacks on receiving
contracts opens up unnecessary novel attack surface to the protocol. Since users can only grief
themselves, there is no serious threat of NFTs being lost up by a malicious attacker.

Impact
Heavy reentrancy guards become necessary, and far more difficult to reason about behavior
when safeTransferFrom callbacks violate checks-effects-interactions.

Recommendation
Replace ERC721 safeTransferFrom calls with transferFrom calls wherever applicable.

Response
Partially fixed.

foostudio 8



3. Possible precision loss on interest rate calculation

Severity: Low
Files: Interest.sol

Description
Premature rounding in Interest.sol::_getInterest(). This leads to precision loss and potentially
compounding mathematical errors.

Impact
Precision loss and potentially compounding mathematical errors.

Recommendation
For math functions that will not overflow, perform all multiplications in the numerator and
denominator separately before doing the division as the final step. This is more accurate than
smaller fractions being multiplied together. The new logic would be `return
_amount.mulDivUp(_aprBps*_duration, _PRECISION*_SECONDS_PER_YEAR);`

Response
Not fixed.

foostudio 9



4. Avoid msg.sender usage in internal functions

Severity: Informational
Files: UserVault.sol

Description
Not a vulnerability at present, but generally good to avoid using msg.sender or msg.value
variables in internal functions and pass those as function parameters instead, only reading them
in the outermost external func. Makes the internal funcs more stateless and less likely to
misuse.

Impact
Potential bugs introduced later.

Recommendation
Pass `msg.sender` as a `from` parameter when going from external functions to internal.

Response
Not implemented.

foostudio 10



5. AddressManager has stale unused functions

Severity: Informational
Files: AddressManager.sol

Description
`addressToIndex` and `indexToAddress` are not used in the V2 code. These can be removed
while still preserving the singleton whitelist contract for easy verifiability and reuse.

Impact
Increased deployment size and gas costs.

Recommendation
Remove unused functions and state.

Response
Not implemented.

foostudio 11



6. Use named mappings

Severity: Informational
Files: *.sol

Description
Solidity 0.8.18 and later support a language feature called named mappings, where keys and
values can be named to give devs better documentation of what’s expected in each.

Impact
Extraneous comments that could be inlined.

Recommendation
Experiment with named mappings where the storage layout otherwise requires comment
explanations.

Response
Not implemented.

foostudio 12

https://blog.soliditylang.org/2023/02/01/solidity-0.8.18-release-announcement/


7. Remove unused imports and use relative imports over absolute

Severity: Informational
Files: *.sol

Description
Cleanup was pushed in this PR: https://github.com/pixeldaogg/florida-contracts/pull/280

foostudio 13

https://github.com/pixeldaogg/florida-contracts/pull/280


8. Fix Natspec
Severity: Informational
Files: *.sol

Description
The first word of Natspec return comments should be the name of the returned variable, instead
of the first word of the description of it.

Impact
Cleaner autogenerated docs.

Recommendation
Update Natspec.

Response
Fixed.

foostudio 14



9. Add multicall
Severity: Informational
Files: UserVault.sol

Description
Currently you have single and plural methods for several actions - depositNft & depositNfts,
withdrawNft & withdrawNfts, withdrawToken & withdrawTokens, etc

It makes sense to use a generalizable multicall here instead, like so:

function multicall(bytes[] calldata data) external payable override returns (bytes[] memory
results) {

results = new bytes[](data.length);
bool success;
unchecked {

for (uint256 i = 0; i < data.length; ++i) {
//slither-disable-next-line calls-loop,delegatecall-loop
(success, results[i]) = address(this).delegatecall(data[i]);
if (!success) revert MulticallFailed();

}
}

}

Impact
Cleaner UX for frontend batching implementation, less deployment codesize.

Response
Implemented.

foostudio 15



10. Replace private mappings + public getters with public mappings
Severity: Informational
Files: *.sol

Description
Solidity automatically populates getter functions for public mappings. So it’s cleaner to replace
private mappings that expose one-to-one getter functions with a public mapping.

Impact
Code bloat.

Recommendation
Simplify these into public mappings.

Response
Implemented.

foostudio 16


